
12

One Size Does Not Fit All: Multi-scale, Cascaded RNNs for

Radar Classification

DHRUBOJYOTI ROY and SANGEETA SRIVASTAVA, The Ohio State University, USA

ADITYA KUSUPATI, University of Washington, USA

PRANSHU JAIN, Indian Institute of Technology Delhi, India

MANIK VARMA, Microsoft Research India, India and Indian Institute of Technology Delhi, India

ANISH ARORA, The Ohio State University, USA and The Samraksh Company, USA

Edge sensing with micro-power pulse-Doppler radars is an emergent domain in monitoring and surveillance

with several smart city applications. Existing solutions for the clutter versus multi-source radar classifica-

tion task are limited in terms of either accuracy or efficiency, and in some cases, struggle with a tradeoff

between false alarms and recall of sources. We find that this problem can be resolved by learning the clas-

sifier across multiple time-scales. We propose a multi-scale, cascaded recurrent neural network architecture,

MSC-RNN, composed of an efficient multi-instance learning (MIL) Recurrent Neural Network (RNN) for clut-

ter discrimination at a lower tier and a more complex RNN classifier for source classification at the upper tier.

By controlling the invocation of the upper RNN with the help of the lower tier conditionally, MSC-RNN

achieves an overall accuracy of 0.972. Our approach holistically improves the accuracy and per-class recalls

over machine learning models suitable for radar inferencing. Notably, we outperform cross-domain hand-

crafted feature engineering with purely time-domain deep feature learning, while also being up to ∼3×more

efficient than a competitive solution.

CCS Concepts: • Computing methodologies → Neural networks; Supervised learning by classification;

Cross-validation; • Computer systems organization → Sensor networks; Real-time system architec-

ture; System on a chip;

Additional Key Words and Phrases: Radar classification, recurrent neural network, low power, edge sensing,

range, joint optimization, real-time embedded systems

This submission is a journal extension of the ACM BuildSys 2019 publications [35, 38] by the same authors. Differences

from the aforementioned publications are highlighted in Section 1.

D. Roy and S. Srivastava are contributed equally to this research.

The computation for this work was supported by the Ohio Supercomputer Center [7] project PAS1090, the IIT Delhi HPC

facility, and Azure services provided by Microsoft Research Summer Workshop 2018: Machine Learning on Constrained De-

vices. (https://www.microsoft.com/en-us/research/event/microsoft-research-summer-workshop-2018-machine-learning-

on-constrained-devices/.)

Authors’ addresses: D. Roy and S. Srivastava, The Ohio State University, 2015 Neil Avenue, Columbus, Ohio, 43210;

emails: {roy.174, srivastava.206}@osu.edu; A. Kusupati, University of Washington, 185 E Stevens Way NE, Seattle, Wash-

ington, 98195; email: kusupati@cs.washington.edu; P. Jain, Indian Institute of Technology Delhi, Hauz Khas, New Delhi,

110016, India; email: anz178419@cse.iitd.ac.in; M. Varma, Microsoft Research India, 9, Vigyan 1st floor, Lavelle Road,

Bengaluru, Karnataka, 560001, India, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India; email:

manik@microsoft.com; A. Arora, The Ohio State University, 2015 Neil Avenue, Columbus, Ohio, 43210, The Samraksh

Company, 5980 Venture Dr, Dublin, Ohio, 43017; email: arora.9@osu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1550-4859/2021/01-ART12 $15.00

https://doi.org/10.1145/3439957

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

https://www.microsoft.com/en-us/research/event/microsoft-research-summer-workshop-2018-machine-learning-on-constrained-devices/
https://www.microsoft.com/en-us/research/event/microsoft-research-summer-workshop-2018-machine-learning-on-constrained-devices/
mailto:permissions@acm.org
https://doi.org/10.1145/3439957

12:2 D. Roy et al.

ACM Reference format:

Dhrubojyoti Roy, Sangeeta Srivastava, Aditya Kusupati, Pranshu Jain, Manik Varma, and Anish Arora. 2021.

One Size Does Not Fit All: Multi-scale, Cascaded RNNs for Radar Classification. ACM Trans. Sen. Netw. 17, 2,

Article 12 (January 2021), 27 pages.

https://doi.org/10.1145/3439957

1 INTRODUCTION

With the rapid growth in deployments of Internet of Things (IoT) sensors in smart cities, the
need and opportunity for computing increasingly sophisticated sensing inferences on the edge has
also grown. This has motivated several advances in designing resource-efficient sensor inferences,
particularly those based on machine learning and especially deep learning. The designs, however,
encounter a basic tension between achieving efficiency while preserving predictive performance
that motivates a reconsideration of state-of-the-art techniques.

In this article, we consider a canonical inference pattern, namely, discriminating clutter from
several types of sources, in the context of a radar sensor. This sort ofN +1–class classification prob-
lem, where N is the number of source types, has a variety of smart city applications, where diverse
clutter is the norm. These include triggering streetlights smartly, monitoring active transportation
users (pedestrians, cyclists, and scooters), crowd counting, assistive technology for safety, and
property surveillance. As an example, streetlights should be smartly triggered on for pedestrians
but not for environmental clutter such as trees moving in the wind. Similarly, property owners
should be notified only upon legitimate intrusions but not for passing animals.

The radar is well-suited in the smart city context, as it is privacy preserving in contrast to cam-
eras. Moreover, it consumes low power (∼15 mW), because of which it can be deployed at opera-
tionally relevant sites with little dependence on infrastructure, using, for instance, a small panel
solar harvester or even a modest-sized battery, as shown in Figure 1. Experiences with deploying
sensors in visionary smart city projects such as Chicago’s Array of Things [6, 42] and Sounds of
New York City [5] have shown that wired deployments on poles tend to be slow and costly, given
constraints of pole access rights, agency coordination, and labor unions, and can sometimes be in
suboptimal locations. Using a low-power sensor that is embedded wirelessly or simply plugged in
to existing platforms while imposing only a nominal power cost simplifies smart city deployment.

Table 1 illustrates an efficiency-accuracy tradeoff for the canonical inference pattern withN = 2,
wherein clutter is distinguished from human and other (i.e., non-human) sources. The more accu-
rate deep models, the Convolutional Neural Network (CNN) [24] and the Long Short-Term Memory
(LSTM) [18], that we machine-learned for this 3-class classifier from a reference dataset are sig-
nificantly less efficient in terms of speed and therefore power consumption. In contrast, the more
efficient shallow solution, Support Vector Machine (SVM), is significantly less accurate. While
the SVM classifier has been implemented to operate in near real-time on the Cortex-M3 single-
microcontroller processor in the device depicted in Figure 1(a), neither the CNN nor the LSTM per
se yield a near real-time implementation. To implement deep models in near real-time on the M3,
we therefore consider model optimization with recent state-of-art-techniques such as fast gated
RNNs (FastGRNN) [28] and Early-exit Multi-Instance RNNs (EMI-LSTM and EMI-FastGRNN) [10].
However, Table 1 illustrates that the tradeoff remains: The best accuracy we achieve, namely, with
FastGRNN, has significantly lower efficiency than the best efficiency achieved, namely, with EMI-
FastGRNN, but the latter’s accuracy is comparatively worse.

Problem Statement. In this work, we investigate alternative optimizations of deep models for
the above classification task that achieve both high accuracy and speed. In doing so, we do not
wish to sacrifice the recall performance for achieving high precision. For instance, radar-sensing

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

https://doi.org/10.1145/3439957

One Size Does Not Fit All: Multi-scale, Cascaded RNNs for Radar Classification 12:3

Fig. 1. The micro-power pulse-Doppler radar (PDR) device can be independently deployed or interfaced with

existing multi-sensor smart city platforms such as Signpost (©Joshua Adkins et al. [3]).

Table 1. Trade-offs in Accuracy and Runtime Efficiency for the

3-class Radar Problem

ML Model Accuracy FLOPS Fits on Cortex-M3?

SVM (15 features) 0.85 37K Yes
LSTM 0.89 100K No
CNN (1s FFT) 0.91 1.3M No
EMI-LSTM 0.90 20K No
EMI-FastGRNN 0.88 8K Yes

Window length 1 s, feature computation overhead ignored for SVM, dataset and machine

architecture details are in Section 5.

applications require that the clutter recall be very high so there are minimal false alarms. How-
ever, a solution that restricts false alarms at the cost of detectability (i.e., low source recall, where
a source could be either human or non-human) would be undesirable, as it would have limited
applicability in the smart city contexts discussed above.

Solution Overview. The N +1-class radar problem, where the +1-class is clutter, conflates
discrimination between classes that are conceptually different. In other words, discriminating
clutter from sources has a different complexity from that of disambiguating source types. This
insight generalizes when the sources themselves are related by a hierarchical ontology, wherein
different levels of source types involve concepts of correspondingly different complexity of
discrimination. By way of example, in the 3-class clutter vs. human vs. non-human classification
problem, discriminating clutter from sources turns out to be simpler than discriminating the
more subtle differences between the source types. Using the same machine architecture for three
classes of discrimination leads to the accuracy-efficiency tradeoff, as the last two rows of Table 1
indicate. A more complex architecture suffices for discriminating among source types accurately,
whereas a simpler architecture more efficiently suffices for discriminating clutter from sources,
but hurts the accuracy of discriminating between source types.

We, therefore, address the problem at hand with an architecture that decomposes the classifica-
tion inference into different hierarchical sub-problems. For the 3-class problem, these are: (a) Clut-
ter vs. Sources, and (b) Humans vs. Non-humans given Sources. For each sub-problem, we choose
an appropriate learning architecture; given the results of Table 1, both architectures are forms of
RNN albeit with learning at different time-scales. The lower tier RNN for (a) uses a short time-scale

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

12:4 D. Roy et al.

RNN, the Early-exit Multi-Instance RNN (EMI-FastGRNN) [10, 28], whereas the higher tier for (b)
uses a longer time-scale RNN, a FastGRNN [28], which operates at the level of windows (contigu-
ous, fixed-length snippets extracted from the time-series) as opposed to short instances within
the window. The upper tier uses the features created by the lower tier as its input; for loss mini-
mization, both tiers are jointly trained. To further improve the efficiency, we observe that source
type discrimination needs to occur only when a source is detected and clutter may be the norm in
several application contexts. Hence, the less efficient classifier for (b) is invoked only when (a) dis-
criminates a source: We refer to this as cascading between tiers. The joint training loss function is
refined to emulate this cascading. We call this architecture Multi-Scale, Cascaded RNN (MSC-RNN).

Contributions. Our proposed architecture exploits conditional inferencing at multiple time-
scales to jointly achieve superior sensing and runtime efficiency over state-of-the-art alternatives.
To the best of our knowledge, this approach is novel to deep radar systems. For the particular case
of the 3-class problem, MSC-RNN performs as follows on the Cortex-M3:

Accuracy Clutter Recall Human Recall Non-human Recall FLOPS

0.972 1 0.92 0.967 9K

Its accuracy and per-class recalls are mostly better than, and in remaining cases competitive with,
the models in Table 1. Likewise, its efficiency is competitive with that of EMI-FastGRNN, the most
efficient of all models, while substantially outperforming it in terms of sensing quality. We also val-
idate that this MSC-RNN solution is superior to its shallow counterparts not only comprehensively,
but at each individual tier as well. The data and training code for this project are open-sourced at
websites cited in References [36, 37].

Other salient findings from our work are summarized as follows:

(1) Even with deep feature learning purely in the time domain, MSC-RNN surprisingly out-
performs handcrafted feature engineering in the amplitude, time, and spectral domains for
the source separation sub-problem. Further, this is achieved with 1.75–3× improvement
in the featurization overhead.

(2) The Tier 1 component of MSC-RNN, which classifies legitimate sources from clutter, im-
proves detectability by up to 2.6× compared to popular background rejection mechanisms
in radar literature, even when the false alarm rate is controlled to be ultra-low.

(3) MSC-RNN seems to tolerate the data imbalance among its source types better than com-
pared EMI-RNN models. In particular, it enhances the non-dominant human recall by up
to 20%, while simultaneously maintaining or improving the dominant non-human recall
and overall accuracy.

In contrast to References [35, 38], we also provide the following additional evaluations of our
solution:

(1) We show that the MSC-RNN joint optimization strategy improves the non-dominant class
(human) recall over competitive training approaches such as independent training of the
two tiers by up to 21% without compromising other metrics. We also show that pre-
training the two tiers prior to commencing the joint training step is crucial for achieving
a much better optimization of the loss objective.

(2) Through a series of regression experiments, we bolster our claim that deep feature learn-
ing in the time domain alone can essentially replace feature handcrafting for radar classifi-
cation. We show that the upper tier of MSC-RNN is able to faithfully approximate the top

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

One Size Does Not Fit All: Multi-scale, Cascaded RNNs for Radar Classification 12:5

engineered features across time, amplitude, and frequency domains from the raw radar
time series with an MAE of 0.09−0.13 and an MSE of 0.02−0.03.

(3) We also discuss how the non-dominant class recalls can be further improved in Tier 2 by
strengthening the end softmax layer post-hoc with a resource-efficient and powerful tree
classifier, Bonsai [25], at no additional storage overhead.

Organization. In Section 2, we present related research and outline the basics of micro-power
radar sensing in Section 3. In Section 4, we detail the various components in our solution and
discuss the training and inference pipelines. We evaluate our solution extensively in Section 5,
and we provide pertinent discussion including implementation details in Section 6.3, respectively.
We conclude and motivate future research in Section 7.

2 RELATED WORK

Shallow and Deep Radar Sensing. Micro-Doppler features have been used in myriad radar-
sensing applications ranging from classification [16, 21, 29] to regression [15]. Most of these
applications employ the short-time Fourier transform (STFT) input representation for analyzing
micro-Doppler signatures. Although shallow classifiers can be computationally cheaper than
deep solutions, the spectrogram generation over a sliding window for the STFT incurs significant
computational overhead for real-time applications on single microcontroller devices. To decrease
the computational overhead, different feature extraction methods [12, 19] have been investigated
in the past. Notably, feature engineering not only requires sophisticated domain knowledge,
but also may not transfer well to solutions for other research problems. Moreover, selection
of relevant and non-redundant features requires care for sensing to be robust [34]. In recent
years, there has been significant use of deep learning in radar applications. Most works with
architectures such as CNNs and autoencoders use spectrogram-based input [20, 22]. The authors
of Reference [30] generate a unique spectral correlation function for the Deep Belief Network to
learn signatures from. The pre-processing needed in these applications and the resulting model
sizes make them unsuitable for single microcontroller devices. Therefore, we use raw time-series
data in conjunction with RNN variants to make our deep learning solution faster and more
efficient in addition to avoiding spectrogram computation altogether.

Efficient RNN. The ability of RNNs in learning temporal features makes them ubiquitous in vari-
ous sequence modeling tasks. They, however, often suffer from training instabilities due to the ex-
ploding and vanishing gradient problem (EVGP) [32]. Gated RNNs such as LSTMs [18] and GRUs
[8] circumvent EVGP and achieve the desired accuracy for a given task but compromise on model
sizes and compute overheads, making them unattractive for real-time, single microcontroller im-
plementations. Recently, FastGRNN [28] has been proposed to achieve prediction accuracies com-
parable to gated RNNs while ensuring that the learned models are significantly smaller for diverse
tasks. The hierarchical classifier solution we present in this article is based on this architecture.

Multi-Instance Learning and Early Classification. MIL is a weakly supervised learning tech-
nique that is used to label sub-instances of a window. MIL has found use in applications from
vision [43] to natural language processing (NLP) [23]. It enables a reduction in the computational
overhead of sequential models like RNNs by localizing the appropriate activity signature in a given
noisy and coarsely labeled time-series data along with early detection or rejection of a signal [10].
We use it as our lower-tier classifier for clutter versus source discrimination.

Multi-Scale RNN. One of the early attempts to learn structure in temporally extended sequences
involved using reduced temporal sequences [17] to make detectability over long temporal intervals
feasible in recurrent networks [31, 39]. With the resurgence of RNNs, multi-scale recurrent models

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

12:6 D. Roy et al.

are being used to discover the latent hierarchical multi-scale structure of sequences [9]. While
they have been traditionally used to capture long-term dependencies, we use them to design a
computationally efficient system by incorporating different scales of temporal windows for the
lower- and upper-tier RNNs. By conditioning the Tier 2 classifier, which works on longer windows
and is hence bulkier, we make sure that the former is invoked only when necessary, i.e., when Tier
1 predicts a source.

Compression Techniques. Sparsity, low-rank, and quantization have been proven to be effective
ways of compressing deep architectures such as RNNs [27, 44] and CNNs [14, 26]. We incorporate
low-rank representation, Q15 quantization and piecewise-linear approximation [28] to make MSC-
RNN realizable on Cortex-M3 microcontrollers.

3 RADAR AND CLASSIFIER MODELS

3.1 Micro-power Radar Model

The monostatic pulsed Doppler radar (PDR) sensor [40] in Figure 1(a) has a pulse repetition fre-
quency of 3 MHz, bandwidth of nearly 100 MHz, a center frequency at about 5.8 GHz, and power
consumption of 38 mW. Its radiation pattern is rather omnidirectional, yielding a maximum detec-
tion range of ∼13 m. It detects movements with radial velocities between 2.6 cm/s and 2.6 m/s; this
range encompasses several kinds of motion such as human walks, animal gaits (walking, ambling,
or trotting), and slow-moving vehicles. The on-board radar antenna radiates with a 60◦ conical
coverage in the z-plane, allowing the radar to be tethered to tree branches or posts at a modest
height. A notable radar artifact is its anisotropic antenna pattern, i.e., different lobes have different
signal return strengths with the front lobe typically being the strongest direction. It is thus possi-
ble that the return from a larger target (e.g., human) on a weaker lobe is comparable to that from
a smaller target (e.g., dog) on a stronger lobe. The radar response is low-pass filtered to 100 Hz;
hence, the output is typically sampled at rates over 200 Hz (in our experimental setting, at 256 Hz).

The output signal from the radar is a complex value, i.e., with in-phase (I) and quadrature (Q)
components. The radar return depends upon all reflecting objects in the scene, which include not
only displacing foreground targets but also clutter that is static or moving in situ such as trees and
bushes. When a target moves within the detection range, the phase of the complex signal changes
according to the direction of motion (specifically, the phase decreases as the target moves away
from the radar and increases as it approaches the radar). Notably, relative but not absolute ranging
of the source is possible: this is shown in Figure 2(a), where a measured output phase (indicated by
the red line) places the source at any one of many possible locations consecutively separated by an
order of wavelength, with rather low likelihood of being in between (Figure 2(b)). Consequently,
its relative displacement can be estimated with high accuracy (typically, sub-cm scale) and a rich
set of features in the amplitude, time, and frequency domains can be derived by tracking its phase
evolution over time.

3.2 Classifier Architectures

3.2.1 Input and Feature Representation. The radar classifier system uses the aforementioned
complex time-series as input. Extant end-to-end architectures for micro-power radar sensing
mostly eschew deep feature learning for cheap handcrafted feature engineering in the amplitude,
time, and spectral domains [15, 34]. However, these solutions incur significant featurization over-
head; this is exemplified in Table 2 on 1-second snippets extracted from the complex time-series.
Even ignoring the SVM computation latency, it can be seen that the main computation bottleneck
is this incremental overhead that results in >30% duty cycle on the Cortex-M3, of which ∼10%
constitutes the FFT overhead alone.

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

One Size Does Not Fit All: Multi-scale, Cascaded RNNs for Radar Classification 12:7

Fig. 2. Relative, but not absolute, ranging is possible over the likely trajectories for a target passing through

the radar-mote field of view.

Table 2. Computation Overheads in a Shallow (SVM) Radar

Solution on Cortex-M3 (10 Features, 1 s Windows)

Component Latency (ms)

FFT 80
Incremental feature computation 212
SVM inference (700 SVs) 55

3.2.2 Shallow Classifier Architecture. As shown in Figure 3, a prototypical shallow radar clas-
sifier system consists of three subsystems: (i) a displacement detector for discriminating clutter
vs. sources, (ii) an incremental featurizer, (iii) an end inference engine that discriminates source
types, and (iv) a composition manager that handles their interactions. The displacement detector
thresholds unwrapped phase over incoming windows of radar data (1

2 s or 1 s) to detect legitimate
source displacements in the scene, filtering in situ clutter that tends to yield self-canceling phase
unwraps. When a source displacement is speculatively detected, the featurizer is invoked till the
current displacement ends or a pre-specified time limit is reached. The final feature vector is fed
to an end classifier such as SVM [34]. Note that incremental feature computation overhead is the
primary impediment in realizing efficiency in these systems; hence, techniques such as replacing
the heavy SVM classifier with the much lighter Bonsai [25] or observing longer displacements to
run inference infrequently do not alleviate this problem.

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

12:8 D. Roy et al.

Fig. 3. SVM classifier data and control planes; control signal-response pairs are color coded.

3.2.3 Deep Classifier Architecture. In the interest of designing resource-efficient solutions, in
this work, we use purely time-domain learning instead of all-domain feature engineering. While
we preserve the aforementioned classifier hierarchy in our solution, we replace the simple “en-
semble” with a principled 2-tier RNN approach. In the next sections, we present our proposed
architecture and discuss how our approaches to deep feature learning can be used to successfully
resolve the above issues.

4 2-TIER DEEP CLASSIFIER ARCHITECTURE

MSC-RNN is a multi-scale, cascaded architecture that uses EMI-FastGRNN as the lower-tier clut-
ter discriminator and FastGRNN as the upper-tier source classifier. While EMI-FastGRNN effi-
ciently localizes the source signature in a clutter prone time-series ensuring smaller sequential in-
puts along with early classification, FastGRNN reduces the per-step computational overhead over
much heavier alternatives such as LSTM. We begin with the relevant background for each of these
components.

4.1 Candidate Classifiers

FastGRNN. FastRNN [28] provably stabilizes RNN training by helping to avoid EVGP by using
only two additional scalars over the traditional RNN. FastGRNN is built over FastRNN, and it ex-
tends the scalars of FastRNNs to vector gates while maximizing the computation reuse. FastGRNN
also ensures its parameter matrices are low-rank, sparse, and byte quantized to ensure very small
models and very fast computation. FastGRNN is shown to match the accuracies of state-of-the-
art RNNs (LSTM and GRU) across various tasks, such as keyword spotting, activity recognition,
sentiment analysis, and language modeling while being up to 45× faster.

LetX = [x1, x2, . . . , xT] be the input time-series, where xt ∈ RD . The traditional RNN’s hidden

vector ht ∈ RD̂ captures long-term dependencies of the input sequence:

ht = tanh(Wxt + Uht−1 + b). (1)

Typically, learning U and W is difficult due to the gradient instability. FastGRNN (Figure 4(a))
uses a scalar controlled peephole connection for every coordinate of ht :

ht = (ζ (1 − zt) + ν) � tanh(Wxt + Uht−1 + bh) + zt � ht−1, (2)

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

One Size Does Not Fit All: Multi-scale, Cascaded RNNs for Radar Classification 12:9

Fig. 4. FastGRNN & EMI-FastGRNN (©Aditya Kusupati et al. [28], ©Don Dennis et al. [10]).

zt = σ (Wxt + Uht−1 + bz). (3)

Here, 0 ≤ ζ ,ν ≤ 1 are trainable parameters, and � represents the vector Hadamard product.

EMI-RNN. Time-series signals when annotated are rarely precise and often coarsely labeled due
to various factors such as human errors and smaller time frames of activities themselves. EMI-
RNN [10] tackles the problem of signal localization using MIL by splitting the ith data window
into instances {Zi,τ }τ=1, ...T−ω+1 of a fixed width ω (Figure 4(b)). The algorithm alternates between
training the classifier and re-labeling the data based on the learned classifier until convergence.
A simple thresholding scheme is applied to refine the instances: In each iteration, k consecutive
instances are found with maximum prediction sum for the class label. Only these instances are
included in the training set for the next iteration. Here, k is a hyperparameter that intuitively
represents the number of instances expected to cover the source signature. In the end, EMI-RNN
produces precise signal signatures that are much smaller than the raw input, thus reducing the
computation and memory overhead over the traditional sequential techniques. EMI-RNN also en-
sures early detection of noise or keywords, thereby removing the need of going through the entire
signal before making a decision. When combined, EMI-FastGRNN provides very small models
along with very fast inference for time-series classification tasks. Codes for FastGRNN [28] &
EMI-RNN [10] are part of Microsoft Research India’s EdgeML repository [11].

4.2 MSC-RNN Design

While EMI-RNN is by itself equipped to handle multi-class classification efficiently, we find its
accuracy and non-dominant source recall to be sub-optimal for the radar time-series, especially
at smaller hidden dimensions and shorter window lengths. FastGRNN, however, is a relatively
heavier solution to be used as a continuously running 3-class discriminator. To redress this tradeoff,
we make the following observations:

(i) clutter, which yields self-canceling phase, can be rejected at a relatively shorter time-
scale,

(ii) disambiguating source types from their complex returns is a harder problem requiring a
potentially longer window of observation, and

(iii) the common case in a realistic deployment constitutes clutter; legitimate displacements
are relatively few.

MSC-RNN, therefore, handles the two sub-problems at different time-scales of featurization
(see Figure 5): the lower tier, an EMI-FastGRNN, discriminates sources from clutter at the level
of short instances, while the upper tier, a windowed FastGRNN, discriminates source types at the
level of longer windows. Further, the upper tier is invoked only when a source is discriminated
by the lower tier and operates on the instance-level embeddings generated by the latter. We note
that instantiating both tiers with FastGRNN is a purely architectural decision for inference-time

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

12:10 D. Roy et al.

Fig. 5. MSC-RNN architecture – The lower EMI-FastGRNN runs continuously, while the higher FastGRNN

is invoked only for legitimate displacements.

efficiency, since it is one of the smallest RNN models that is competitive with bigger, gated
architectures such as LSTMs or GRUs. In principle, FastGRNN can be replaced with any suitable
recurrent model in the MSC-RNN architecture.

4.2.1 Joint Training and Inference. The training of the lower tier inherits from that of EMI-
training. We recap its training algorithm [10], which occurs in two phases, the MI phase and the
EMI phase. In the MI phase, where the source boundaries are refined in a clutter-prone window,
the following objective function is optimized:

min
fl ,si

1

n

∑
i,τ

1τ ∈[si ,si+k]�(fl (Zi,τ),yi). (4)

Here, � represents the loss function of FastGRNN, and the classifier fl is based on the final time-
step in an instance. In the EMI phase, which incorporates the early stopping, the loss LEMI is
obtained by replacing the previous loss function with the sum of the classifier loss at every step:
min
∑

i

∑T
t=1 �(w

Toi,t), wherew is the fully connected layer andoi,t the output at step t . The overall
training proceeds in several rounds, where the switch to the EMI loss function is typically made
halfway in.

For training the upper tier, in keeping with the divide-and-conquer paradigm of MSC-RNN, the
Tier 2 FastGRNN cell should only learn to separate the source types while ignoring instances of
training data that are clutter. Therefore, we devise a conditional training strategy that captures the
cascading behavior. To achieve this, the standard cross-entropy loss function of the upper tier is
modified as:

min
fu

1

n

∑
i

1yi�−1�(fu (E ({Z tr
i,τ })),yi), (5)

where fu represents the upper classifier, and E : R(T−ω+1)×ω×F → R(T−ω+1)×Hl represents the
instance-level embedding vector from EMI-RNN with a hidden dimension ofHl (here, F represents

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

One Size Does Not Fit All: Multi-scale, Cascaded RNNs for Radar Classification 12:11

ALGORITHM 1: MSC-RNN training algorithm

Input: Multi-instance training data {{Z tr
i,τ }τ=1, ...T−ω+1,y

tr
i }i=1, ...n , the number of rounds nr , the

number of epochs ne per round, k
Training:

1: Freeze FastGRNN, unfreeze EMI-FastGRNN

2: repeat

3: Train EMI-FastGRNN({{Z tr
i,τ },1ytr

i
�−1}) for nr × ne epochs

4: until convergence

5: Freeze EMI-FastGRNN, unfreeze FastGRNN

6: repeat

7: Train FastGRNN({E ({Z tr
i,τ },y

tr
i)}) for nr × ne epochs, minimizing loss

1
n

∑
i
1yi�−1�(fu (E ({Z tr

i,τ })),yi)

8: until convergence

9: Unfreeze both EMI-FastGRNN and FastGRNN

10: for r ∈ nr do

11: if r < nr

2 then

12: Llower ←MI-loss

13: else

14: Llower ← EMI-loss

15: end if

16: repeat

17: Train MSC-RNN({{Z tr
i,τ },1ytr

i
�−1}) for ne epochs minimizing loss

Llower +
1
n

∑
i
1yi�−1�(fu (E ({Z tr

i,τ })),yi)

18: until convergence

19: end for

the feature dimension for the radar time-series). Intuitively, this means that the upper loss is
unaffected by clutter points, and thus the tiers can be kept separate.

The training algorithm for MSC-RNN is outlined in Algorithm 1. The two tiers are first sepa-
rately initialized using their respective loss functions, and in the final phase, both are jointly trained
to minimize the sum of their losses. Inference is simple: The instance-level EMI-RNN stops early
with a decision of “Source” when a probability threshold p̂ is crossed; ≥ k consecutive positives
constitute a discrimination for which the cascade is activated.

5 COMPARATIVE & TIER-WISE EVALUATION

5.1 Datasets

Table 3(a) lists the radar source and clutter datasets collected in various indoor and outdoor envi-
ronments, which are used in this work. Some of these locations are documented in Figure 6; small
or crammed indoor spaces such as office cubicles have been avoided to prevent the radar returns
from being adversely affected by multi-path effects and because they are not central to the smart
city scenarios. A partial distribution of displacement durations is provided in Figure 7(a). Each data
collect has associated with it the corresponding ground truth, recorded with motion-activated trail
cameras or cellphone video cameras, with which the radar data was correlated offline to “cut” and
label the source displacement snippets appropriately.1 The datasets have been balanced in the

1The radar dataset, which we have open-sourced, does not include individually identifiable information of living individuals

and is thus not considered research with human subjects per 45 CFR §46.102(e)(1)(ii).

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

12:12 D. Roy et al.

Fig. 6. Some locations where source and clutter data were collected for experiments.

Fig. 7. Source-detected duration CDF for the data in Table 3(a) and how the hyperparameter k in 2-class

EMI affects their detection (1-second windows).

number of human and non-human displacement points where possible and windowed into snip-
pets of 1, 1.5, and 2 seconds, which correspond to 256, 384, and 512 I-Q sample pairs, respectively.
We note that due to the duration of collections and differences in average displacement lengths
and so on, humans are underrepresented in these datasets compared to the other labels. Table 3(b)
shows the number of training, validation, and test points for each of these window lengths on a
roughly 3:1:1 split. Currently, only the cattle set has multiple concurrent targets; efforts to expand
our datasets with target as well as radar type variations are ongoing.

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

One Size Does Not Fit All: Multi-scale, Cascaded RNNs for Radar Classification 12:13

Table 3. Radar Evaluation Datasets

(a) Source displacement counts and clutter durations

Environment Data Type
Type Count

Building foyer Human, Gym ball 52, 51
Indoor amphitheater Human, Gym ball 49, 41
Parking garage bldg. Human 268
Parking lot Human, Car 50, 41
Indoor soccer field Human, Gym ball 90, 82
Large classroom Human, Gym ball 48, 50
Cornfield Human, Dog 117, 85
Cattle shed Cow 319
Playground Clutter 45 mins
Parking garage bldg. Clutter 45 mins
Public park Clutter 45 mins
Garden Clutter 45 mins
Lawn Clutter 20 mins

(b) Windowed data from (a) showing number of training, validation, and test points

Window Length (s) #Windows
Training Validation Testing

1 17,055 5,685 5,685
1.5 11,217 3,739 3,739
2 8,318 2,773 2,773

5.2 Evaluation Methodology

Our proposed architecture is compared with existing shallow radar solutions that use feature hand-
crafting in the amplitude, phase, and spectral domains, as well as with other MIL RNNs. In all cases
involving RNNs, the radar data is represented purely in the time domain. The models chosen for
this evaluation are:

(a) 2-tier SVM with phase unwrapped displacement detection. Phase unwrapping [13]
is a widely used technique in radar displacement detection due to its computational effi-
ciency. The idea is to construct the relative trajectory of a source by accumulating differ-
ences in successive phase measurements, whereby clutter can be filtered out. We contrast
MSC-RNN with a two-tier solution proposed in Reference [34], which uses a robust vari-
ant of phase unwrapping with adaptive filtering of clutter samples.

(b) 3-class SVM. A clutter vs. human vs. non-human SVM solution that uses feature
handcrafting.

(c) EMI-FastGRNN. An EMI version of FastGRNN (Section 4).
(d) EMI-LSTM. An EMI version of the LSTM. Note that this is a much heavier architecture

than the former and should not be regarded as suitable for a microcontroller device.

Since shallow featurization incurs high incremental overhead, real-time micro-power radar
solutions typically only compute the highest information features. For the SVM solutions, training

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

12:14 D. Roy et al.

Table 4. Training Hyperparameters Used

Model Hyperparameter Values

EMI/FastGRNN

Batch size 64, 128
Hidden size 16, 32, 64
Gate non-linearity sigmoid, tanh
Update non-linearity sigmoid, tanh
k 10
Keep prob. (EMI-LSTM) 0.5, 0.75, 1.0
Optimizer Adam

SVM
c 1e-3, 1e-2, 0.1, 1, 10, 100, 1e3, 1e5, 1e6
γ 1e-3, 1e-2, 5e-2, 0.1, 0.5, 1, 5, 10

is performed with the best 15 features selected by the minimal-redundancy-maximal-relevance

(mRMR) criterion [33].
For the MIL experiments, the windowed data from Table 3(b) is further reshaped into instances

of length 48× 2 samples with a fixed stride of 16× 2, where 2 refers to the number of features (I and
Q components of radar data). For example, for 1-second windows, the shape of the training data
for MIL experiments is (17055, 14, 48, 2), and the shape of the corresponding instance-level one-hot
labels is (17055, 14, 3). In the interest of fairness and also to avoid a combinatorial exploration of
architectural parameters, we present results at fixed hidden sizes of 16, 32, and 64. For MSC-RNN,
the lower tier’s output (embedding) dimension and upper tier’s hidden dimension are kept equal;
however, in practice, it is easy to parameterize them differently, since the former only affects the
latter’s input dimension.

5.2.1 Hyperparameters. Table 4 lists the hyperparameter combinations used in our experi-
ments. For the upper-tier source discrimination comparison in Section 5.3.3, FastGRNN is also
allowed to select its optimum input length from 16, 32, and 64 samples.

The selection of the EMI hyperparameter k merits some discussion, in that it controls the extent
of “strictness” we assign to the definition of displacement. A higher k makes it more difficult for a
current window to be classified as a source unless the feature of interest is genuinely compelling.
Expectedly, this gives a tradeoff between clutter and source recall, as is illustrated in Figure 7(b).
As explained in Section 1, controlling for false positives is extremely important in radar-sensing
contexts such as intrusion detection. Hence, we empirically set k to 10, the smallest value that
gives a clutter recall of 0.999 or higher in our windowed datasets.

5.3 Results

5.3.1 Comparative Classifier Performance. We compare the inference accuracy and recalls of
MSC-RNN, with the RNN and shallow solutions outlined in Section 5.2.

Recall that we have purposefully devised a purely time-domain solution for source discrimi-
nation for efficiency reasons, since one of the main components of featurization overhead is that
of FFT computations. Figure 8 compares MSC-RNN with engineered features in the amplitude,
time, and spectral domains that are optimized for micro-power radar classification. For the two-
tier SVM, the source recalls for increasing window sizes are inferred from Figure 9 (discussed in
Section 5.3.3). We find that MSC-RNN significantly outperforms the 2-tier SVM solution in terms
of human and non-human recalls, even with features learned from the raw time-series. Similarly,
for the 3-class case, our solution provides much more stable noise robustness and is generally
superior even to the much heavier SVM solution.

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

One Size Does Not Fit All: Multi-scale, Cascaded RNNs for Radar Classification 12:15

Fig. 8. Classification comparison of purely time-domain FastGRNN with two SVM solutions: (a) a 2-tier

system using a phase unwrapped clutter rejector as the lower tier and (b) a 3-class SVM. Both use 15 high

information features handcrafted in the amplitude, time, and spectral domains.

Fig. 9. Comparison of miss probabilities versus displacement durations of Tier 1 classifier vs. 3-out-of-4

phase unwrapped displacement detector.

5.3.2 Runtime Efficiency Comparison - MSC-RNN vs. Feature Handcrafting. Table 5 lists the run-
time duty cycle estimates of MSC-RNN versus shallow SVM alternatives in two deployment con-
texts with realistic clutter conditions supported by usage statistics of a popular biking trail in
Columbus, OH [2]. While the 2-tier SVM understandably has the lowest duty cycle due to a cheap
lower tier, it is not a competitive solution as established in Section 5.3.1. The 3-class SVM, how-
ever, is dominated by the feature computation overhead. While the 48 × 2 MSC-RNN formulation

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

12:16 D. Roy et al.

Table 5. Estimated Featurization Duty Cycle Comparison on

ARM Cortex-M3

Architecture Est. Duty Cycle (Cortex-M3)

97% Clutter 98% Clutter

MSC-RNN (Inp. dim.=2) 21.00% 20.00%
MSC-RNN (Inp. dim.=16) 10.87% 10.70%
2-Tier SVM 2.05% 1.70%
3-Class SVM 35.00% 35.00%

Table 6. Independent of the Tier 1 Classifier, the Tier 2 Source-type Classifier Outperforms the SVM

Accuracy Human Recall Non-human Recall

Window

Length (s)

SVM

_15f

Fast-

GRNN

SVM

_15f

Fast-

GRNN

SVM

_15f

Fast-

GRNN

1 0.93 0.93 0.90 0.90 0.93 0.94
1.5 0.93 0.93 0.90 0.93 0.95 0.95
2 0.93 0.96 0.86 0.96 0.96 0.97

is about 1.75× as efficient as using handcrafted features, it is possible to reduce instance-level com-
putations even further by using longer input vectors and reducing the number of iterations. As an
example, an alternate formulation of MSC-RNN with a 16-dimensional input vector at the instance
level is 3× more efficient than feature engineering.

5.3.3 Tier-wise Evaluation. We next compare the lower-tier and upper-tier classifiers individu-
ally to their shallow counterparts in the 2-tier SVM solution.

Tier 1 Classifier. Figure 9 compares the probabilities of missed detects versus displacement du-
rations for the 3-out-of-4 displacement detector and the EMI component of our solution (for a
principled approach to choosing parameters for the former, refer to Appendix A) at hidden sizes
of 16, 32, and 64. It can be seen that, for the shortest cut length of 1.5 s in the dataset, the de-
tection probability is improved by up to 1.5× (1.6×) over the 3-out-of-4 detector with false alarm
rates of 1/week and 1/month, respectively, even when the false alarm rate (1−test clutter recall)
of EMI is 0, which translates to a false alarm rate of <1 per year. Further, the EMI detector con-
verges to 0 false detects with displacements ≥2.5 s and is therefore able to reliably detect walks
2.6× shorter than the previous solution. Therefore, it is possible to restrict false positives much
below 1/month while significantly improving detectability over the M-out-of-N solution. Since
the clutter and source datasets span various backgrounds (Figure 6), MSC-RNN offers superior
cross-environmental robustness.

Tier 2 Classifier. We now show that the gains of MSC-RNN over the 2-tier SVM solution are not,
in fact, contingent on the quality of the underlying displacement detector for the latter. For this
experiment, we train a 2-class FastGRNN on embeddings derived from the Tier 1 EMI-FastGRNN.
Table 6 compares its performance with the upper-tier SVM from the latter when trained with
the best 15 cross-domain features obtained from the raw radar samples. It can be seen that the
purely time-domain FastGRNN still generally outperforms the 2-class SVM on all three metrics of
accuracy, human recall, and non-human recall. Thus, it is possible to replace feature engineering
with deep feature learning and enjoy the dual benefits of improved sensing and runtime efficiency
for this class of radar applications.

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

One Size Does Not Fit All: Multi-scale, Cascaded RNNs for Radar Classification 12:17

Table 7. Joint Training the Two Tiers of MSC-RNN Generally Improves/maintains All Metrics over

Training Them Independently

Accuracy Clutter Recall Human Recall Non-human Recall

Window
Length (s)

MSC
(Joint

Tr.)

MSC (No
Joint
Tr.)

MSC
(Joint

Tr.)

MSC (No
Joint
Tr.)

MSC
(Joint

Tr.)

MSC (No
Joint
Tr.)

MSC
(Joint

Tr.)

MSC (No
Joint
Tr.)

H=16

1 0.928 0.9278 0.999 0.999 0.750 0.778 0.945 0.933
1.5 0.946 0.910 0.999 0.999 0.845 0.693 0.944 0.930
2 0.955 0.915 1 1 0.853 0.681 0.955 0.931

H=32

1 0.943 0.932 0.999 0.999 0.823 0.761 0.947 0.951
1.5 0.954 0.929 0.999 0.999 0.872 0.775 0.952 0.936
2 0.972 0.921 1 1 0.920 0.713 0.967 0.934

H=64

1 0.944 0.936 0.999 0.999 0.826 0.829 0.948 0.930
1.5 0.954 0.932 0.999 0.999 0.872 0.809 0.952 0.929
2 0.965 0.925 1 1 0.904 0.742 0.960 0.930

5.3.4 Evaluation of MSC-RNN Joint Training Strategy. MSC-RNN can be trained in a couple of
ways to arrive at the final model. Algorithm 1 presents the best strategy among the following:

(1) The two tiers are jointly trained with a combined loss function in the last round,
(2) The two tiers are independently trained prior to training the joint optimization objective

(warm start) as opposed to training purely with the combined loss (cold start).

We next evaluate the impact of each of these strategies. The analysis is done in two different
epoch settings, with the number of rounds nr and the number of epochs per round ne set to 50
(100) and 50 (50), respectively, and the best results are reported.

Joint versus Independent Training. We compare Algorithm 1 with an alternate training strat-
egy where the EMI layer is first trained with loss Llower freezing the upper FastGRNN, and then
the upper tier is trained with loss 1

n

∑
i 1yi�−1�(fu (E ({Z tr

i,τ })),yi) freezing the lower tier. This is
very similar to steps 1–8 in Algorithm 1, with one difference. Since MSC training encompasses

independent training with early exit through convergence as its pre-processing step, we instead
let the purely independent training run for the full nr × ne epochs without early exit for fairness’
sake. At the end of training, the checkpointed model with the best validation accuracy is used to
generate the test results.

The results are presented in Table 7. While it is clear that joint training per Algorithm 1 generally
maintains or improves upon all metrics, especially human recall, two salient observations can be
made:

(1) For relatively simpler models and when the input sequence is short, the joint optimization
strategy is sometimes an overkill. This is illustrated through an inversion in the human
recall improvement at H=16 on 1-second windows. However, this simple setting typi-
cally yields overall suboptimal results. And when the machine is more complex and has
longer sequences to memorize, independent training fails to find good optima; conse-
quently, training performance degrades with increasing window lengths. Joint training,

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

12:18 D. Roy et al.

Table 8. Joint Training of MSC-RNN with Pre-training the Two Tiers (Warm Start) is Better than Training

the Joint Optimization Objective from the Very First Epoch (Cold Start)

Accuracy Clutter Recall Human Recall Nonhuman Recall

Window
Length (s)

Joint Tr.
(Warm
Start)

Joint Tr.
(Cold
Start)

Joint Tr.
(Warm
Start)

Joint Tr.
(Cold
Start)

Joint Tr.
(Warm
Start)

Joint Tr.
(Cold
Start)

Joint Tr.
(Warm
Start)

Joint Tr.
(Cold
Start)

H=16

1 0.928 0.910 0.999 0.999 0.750 0.710 0.945 0.922
1.5 0.946 0.910 0.999 0.999 0.845 0.771 0.944 0.896
2 0.955 0.935 1 1 0.853 0.795 0.955 0.933

H=32

1 0.943 0.919 0.999 0.999 0.823 0.772 0.947 0.914
1.5 0.954 0.926 0.999 0.999 0.872 0.749 0.952 0.942
2 0.972 0.925 1 1 0.920 0.732 0.967 0.936

H=64

1 0.944 0.930 0.999 0.999 0.826 0.749 0.948 0.951
1.5 0.954 0.929 0.999 0.999 0.872 0.786 0.952 0.932
2 0.965 0.948 1 1 0.904 0.866 0.960 0.934

however, improves the optimization significantly and its performance increases monoton-
ically with window length at each hidden dimension.

(2) For longer window lengths, the number of training data points is also reduced signifi-
cantly (Table 3(b)). From Table 7, it is apparent that the lack of data also affects training
performance of the complex, two-tier MSC-RNN model in the absence of a joint optimiza-
tion strategy. Though it is not easy to decouple the effect of having to memorize longer
sequences from that of reduced data, joint training does seem to offer significantly better
resilience to the latter.

Impact of Pre-training MSC-RNN Tiers. We compare Algorithm 1 with a variant where the
combined loss objective ofLlower +

1
n

∑
i 1yi�−1�(fu (E ({Z tr

i,τ })),yi) is optimized from the very first
epoch and tabulate the results in Table 8. As before, the cold-start approach is allowed to train for
the full nr × ne epochs without early exit for reasons of fairness.

It can be seen that the cold-start approach is significantly worse at all window lengths and
all hidden sizes, most prominently in terms of human recall performance. This can be explained
by the fact that MSC-RNN has essentially two objective functions, one at each tier, and trivially
combining them can be unstable, since the two objectives have to be optimized simultaneously.
Instead, the warm-start technique used by Algorithm 1 pre-trains the two tiers alternately at the
start to stabilize the space before joint optimization (steps 1-8). Doing so reduces the learning
complexity, and the learned parameters of Tier 1 or Tier 2 (whichever is frozen) help drive the
other stage towards a common optimum. In the end, joint optimization (steps 9–18) with both tiers
unfrozen fine-tunes these representations and is seen to boost the performance significantly. This
is corroborated through Figure 10, which shows the training loss landscapes of MSC-RNN joint
training at H = 64, with and without alternating pre-training per round (ne = 50). For the warm-
start variant, the point where the training switches to the combined loss objective is indicated,
while the cold-start algorithm uses the same loss function throughout. It is clear that, for all three

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

One Size Does Not Fit All: Multi-scale, Cascaded RNNs for Radar Classification 12:19

Fig. 10. Training loss landscapes of MSC-RNN joint optimization with (warm start) and without (cold start)

pre-training of the two tiers (H=64).

window lengths, the warm-start approach yields more stable training and finds better minima in
the joint optimization phase.

5.3.5 MSC-RNN Architectural Justification. Figures 11(a)–(c) contrast our model with 3-class
EMI-FastGRNN and EMI-LSTM for fixed hidden sizes of 16, 32, and 64, respectively. It can be seen
that MSC-RNN outperforms the monolithic EMI algorithms on all three metrics of accuracy, non-
human, and human recalls (with one exception for EMI-LSTM). Notably, cascading significantly
enhances the non-dominant class recall over the other methods, especially for larger hidden sizes,
and therefore offers better resilience to the source type imbalance in radar datasets.

6 DISCUSSION

6.1 Can Deep Feature Learning Replace Feature Engineering for Radar Classification?

In this section, we present a deeper defense of our claim that RNN feature learning purely in the
time domain can essentially replace feature handcrafting in the amplitude, time, and frequency
domains. We establish this through an experimental setup to learn the top 16 handcrafted fea-
tures selected by the mRMR algorithm [33] from the raw radar time series. We find that a single
FastGRNN cell is able to approximate the feature vectors with reasonably high accuracy. In these
(regression) experiments, we optimize the Mean Squared Error (MSE) loss, given by:

MSE =
1

n

n∑
i=1

(yi − ŷi)2.

Since no other FC layers are introduced post featurization, the RNN’s hidden size is fixed to the
feature dimension (16). In addition to the training and validation MSE, we also report the Mean
Absolute Error (MAE), given by:

MAE =
1

n

n∑
i=1

|yi − ŷi |.

Figures 12(a)–(c) illustrate the training progression for 1,000 epochs at window lengths of 1 s,
1.5 s, and 2 s, respectively, while the corresponding test performances are presented in Table 9.
Given that the norm of the engineered features is approximately 2.5, it is clear that FastGRNN is
able to learn the top handcrafted features used in a mote-scale shallow radar solution in a stable
manner (the slight degradation with longer input sequences can be attributed to the hidden size
being constrained). Interestingly, most of the relevant handcrafted features are in the frequency
domain (cf. Table 11 in Appendix B), which the RNN can learn purely from raw data. This can be

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

12:20 D. Roy et al.

Fig. 11. Sensing performance comparison of MSC-RNN with EMI-FastGRNN and EMI-LSTM.

explained by the fact that STFT, and features derived from it, are essentially linear transformations
on the time domain signal and can therefore be faithfully approximated by a non-linear featurizer.

6.2 Improving Non-dominant Recalls Further – Post hoc Strengthening of Tier 2

Classifier

The MSC-RNN non-dominant (human) class recalls can, in fact, be improved further while main-
taining accuracies and dominant class recalls and without increasing the storage overhead. We
achieve this by re-training the upper tier post hoc with a stronger end classifier (this is not done
for the simpler clutter rejection common case, since it is a slightly heavier step than computing
softmaxes on EMI embeddings). Specifically, we use Bonsai [25] to replace the last layer of the
Tier 2 FastGRNN. Bonsai learns a single, short, sparse tree classifier with powerful non-linear pre-
dictors at internal as well as leaf nodes, designed for use on resource-constrained devices. It first

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

One Size Does Not Fit All: Multi-scale, Cascaded RNNs for Radar Classification 12:21

Fig. 12. Evolution of training and validation loss (MSE) and MAE with a FastGRNN setup to approximate the

top 16 cross-domain handcrafted features for radar classification, purely from time domain input. N.B.: The

training and validation MSEs and MAEs almost overlap in each training, indicating no over-/underfitting.

projects the feature vectors into a low-dimensional space, and the parameters of this projection
matrix are learned jointly with all tree parameters. Equation (6) describes the Bonsai inference
computation for a feature vector x that is projected to a low-dimension P using a sparse matrix Z:

y (x) =
∑

k

Ik (x)WT
k Zx � tanh

(
σV

T
k Zx

)
. (6)

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

12:22 D. Roy et al.

Table 9. Test Loss (MSE) and MAE of FastGRNN That Approximate the

Top 16 Cross-domain Handcrafted Features (�2 Norm ≈2.5) for Radar

Classification Using Time Domain Input

Window Length (s)

1 1.5 2

MSE MAE MSE MAE MSE MAE

0.020 0.090 0.026 0.115 0.031 0.127

Table 10. MSC-RNN Human Recalls Can Be Further Improved by Replacing the Fully Connected End

Classifier with a Short, Heavy-noded Bonsai Tree with No Additional Storage Overhead

Accuracy Human Recall Non-human Recall

Window
Length (s)

MSC
Tier 2 +
Logistic

MSC
Tier 2 +
Bonsai

MSC
Tier 2 +
Logistic

MSC
Tier 2 +
Bonsai

MSC
Tier 2 +
Logistic

MSC
Tier 2 +
Bonsai

1 0.911 0.910 0.851 0.886 0.938 0.920
1.5 0.920 0.920 0.834 0.844 0.958 0.952
2 0.923 0.938 0.845 0.910 0.953 0.951

Results shown are for the upper tier with H=64.

Here, x is the upper-tier embedding vector, k is an index over the number of nodes in the Bonsai
tree (7 for a 2-layer tree), Ik is an indicator function that is 1 if the nodek is in the computation path,
Wk and Vk are weight matrices associated with node k , and � represents the Hadamard operation.
For a projection dimension of P , the branching or Ik is determined by an additional P-dimensional
vector θk that is learned at each internal node, where the sign of θT

k
Zx indicates whether the left

or right child of the tree is taken. Note that each Wk and Vk also reduces to P-dimensional vectors
for the binary classification problem.

In this experimental setup, we use Bonsai classifiers of depth 2 and 3 and report the best results
at each window length (Table 10) for H = 64. To keep the sizes under 64 × 2 for the last layer, we
keep the weights Wk , Vk , θk , as well as the projection matrix Z 90% sparse and use projection
dimensions of 13 and 9 for the two tree depths, respectively. It can be seen that the human class
recalls can be improved by up to 7% by strengthening the end classifier post hoc. Note that only the
upper tier is jointly re-learned with Bonsai in these experiments. Jointly optimizing both tiers of
MSC-RNN along with Bonsai is a much more complex objective that can potentially yield further
benefits; this is left as future work.

6.3 Low-power Implementation Details

The radar sensor described in Figure 1(a) uses an ARM Cortex-M3 microcontroller with 96 KB of
RAM and 4 MB of flash storage. It runs eMote [41], a low-jitter near real-time operating system
with a small footprint. We emphasize that energy-efficient compute—not working memory or
storage—is the bigger concern for efficient real-time operation. Hence, we take several measures
to efficiently implement the multi-scale RNN to run at a low duty cycle on the device. These
include low-rank representations of hidden states, integer quantization, and piecewise-linear

approximations of non-linear functions. The latter in particular ensures that all the computations
can be performed with integer arithmetic when the weights and inputs are quantized. For

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

One Size Does Not Fit All: Multi-scale, Cascaded RNNs for Radar Classification 12:23

example, tanh(x) can be approximated as:

quantTanh(x) =

{
x , if |x | < 1
sgn(x) , otherwise,

(7)

and sigmoid(x) can be approximated as:

quantSigm(x) = max
(
min
(x + 1

2
, 1
)
, 0
)
. (8)

Similar to Reference [28], the weight matrices at both tiers of MSC-RNN are trained with low-
rank representations for faster inference. The RNN matricesW and U are represented as follows:

W =W 1 (W 2)T, (9)

U = U 1 (U 2)T, (10)

where the low rank hyperparameters rw and ru dictate that W 1 ∈ RD×rw , W 2 ∈ RD̂×rw , whereas

U 1,U 2 ∈ RD̂×ru . This step reduces the net complexity over T timesteps from O (TD̂ (D + D̂)) to

O (T (rw (D + D̂) + ru D̂)).
The underlying linear algebraic operations are implemented using the CMSIS-DSP library [1].

While advanced ARM processors such as Cortex-M4 do offer floating point support, it should be
noted that, for efficiency reasons, using sparse, low rank matrices and quantization techniques are
beneficial in general.

6.4 Learning from Diverse Backgrounds and Source Types

The clutter (background) data in the experiments described in this article were collected from a va-
riety of sparsely populated urban settings suitable for our application domain. We have reasonable
confidence that our solution can be seamlessly transferred to other urban deployments, such as
in backyards or on biking trails. We also believe that increasing background diversity in learning
would certainly make the model more robust to clutter, akin to our observations in Reference [34].
However, we note that the radar should not be deployed in too cluttered spaces, such as in small
rooms or very close to building walls, since the resultant reflections may interfere constructively
or destructively and either artificially increase false positives or reduce the sensing range in a
non-deterministic way. This was corroborated through our observations in a recent indoor demo
[35], where the radar orientation had to be hand-tuned to minimize false positives resulting from
various reflective surfaces such as walls, desks, and chairs.

Similarly, the Tier 2 FastGRNN can be easily extended to accommodate multiple source types:
Increasing the number of classes should not affect the outcome from a learning perspective pro-
vided enough multi-class data is available to train a deep model. The present work has combined
the car, dog, ball, and cattle classes into one Non-human class with comparable training points
to the corresponding Human class. Extending this setup to create a multi-class classifier would
require adequate representation of each individual source type in the training data. To this end,
our efforts are ongoing to add more source diversity to this dataset through collection as well as
synthesis of radar data (such as with physics-guided generative modeling).

7 CONCLUSION AND FUTURE WORK

In this work, we introduce multi-scale, cascaded RNNs for radar sensing and show how lever-
aging the ontological decomposition of a canonical classification problem into clutter vs. source
classification, followed by source type discrimination on an on-demand basis, can improve both
sensing quality as well as runtime efficiency over alternative systems. Learning discriminators

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

12:24 D. Roy et al.

at the time-scales relevant to their respective tasks and jointly training the discriminators while
being cognizant of the cascading behavior between them yields the desired improvement.

The extension of MSC-RNNs to more complicated sensing contexts is a topic of future work. Of
interest are regression-based radar “counting” problems such as occupancy estimation or active
transportation monitoring, where the competitiveness of MSC-RNN to architectures such as TCNs
[4] could be insightful. We also believe that MSC-RNN could also apply to alternative sensing for
smart cities and built environments where the sources have intrinsic ontological hierarchies, such
as in urban sound classification [5].

APPENDICES

A PARAMETER SELECTION FOR M-OUT-OF-N DISPLACEMENT DETECTOR

We discuss the parameter selection process for the unwrapped-phase displacement detector [34]
referenced in Figures 8 and 9 in a principled manner. Figure 13(a) shows the cumulative distribu-
tion of unwrapped phase changes of environmental clutter, translated into real distance units, in

Fig. 13. Shallow displacement detector parameter selection using the datasets from Table 3(a): here, M=3

and N=4.

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

One Size Does Not Fit All: Multi-scale, Cascaded RNNs for Radar Classification 12:25

various environments for 1-second integration windows from the clutter datasets in Table 3(a).
The data is extrapolated using linear fitting on a logarithmic scale to estimate the required phase
thresholds to satisfy false alarm rates of 1 per week and 1 per month, respectively (derived us-
ing Bernoulli probabilities). We see that the unwrapped thresholds for 1 false alarm per week and
month correspond to 0.3 and 0.32 m, respectively. In this analysis, we fix the IQ rejection parameter
at 0.9, which gives us the most lenient thresholds.

Figure 13(b) illustrates the CCDFs of phase displacements for all source types (humans, gym
balls, dogs, cattle, and slow-moving vehicles) in our dataset combined, calculated over 1-second
windows. Setting thresholds based on the previous analysis, the probability of false negatives per
window is still significant. In practice, the algorithm improves detection by basing its decision on
3-out-of-4 sliding windows, where detectability improves, since the threshold per window is now
3
4× the original threshold. For 1 false alarm per week (month), the displacement threshold for the
3-out-of-4 detector reduces to 0.22 m (0.24 m) per window, with an improved detection probability
of 0.59 (0.62).

B TOP 16 HANDCRAFTED FEATURES SELECTED BY MAX-RELEVANCE

MIN-REDUNDANCY

In this section, we list the top 16 amplitude, time, and frequency features that are selected by
the mRMR algorithm for mote-scale Human vs. Non-human SVM classification out of a pool of
80 cross-domain features.

Table 11. Top 16 Engineered Features Selected by mRMR for 1 s, 1.5 s, and 2 s Windows

1s 1.5s 2s

Feature Threshold Domain Feature Threshold Domain Feature Threshold Domain

stdev(abs(signal)) Amplitude stdev(abs(signal)) Amplitude sum(abs(signal)) Amplitude

90th percentile phase diff. Time 90th percentile velocity Time 90th percentile velocity Time

70th percentile phase diff. Time 50th percentile velocity Time Distance Time

50th percentile phase diff. Time Distance Time Time Time

50th percentile velocity Time Time Time var(numHitBins) 14.144 Frequency

Distance Time var(numHitBins) 14.144 Frequency max(numHitBins)/(time-8) 14.144 Frequency

Time Time max of excited frequencies 14.144 Frequency max(numHitBins)/(time-8) 17 Frequency

var(numHitBins) 14.144 Frequency var(numHitBins) 17 Frequency var(numHitBins) 18.915 Frequency

median(numHitBins)/(time-4) 14.144 Frequency var(numHitBins) 18.915 Frequency max(numHitBins)/(time-8) 18.915 Frequency

var(numHitBins) 17 Frequency max of excited frequencies 20 Frequency max of excited frequencies 20 Frequency

median(numHitBins)/(time-4) 17 Frequency var(numHitBins) 24.144 Frequency max(numHitBins)/(time-8) 20 Frequency

var(numHitBins) 18.915 Frequency Max of excited frequencies 25 Frequency Total power 20 Frequency

Max of excited frequencies 18.915 Frequency Width of excited frequencies 25 Frequency var(numHitBins) 24.144 Frequency

Total power 24.144 Frequency Total power 25 Frequency max(numHitBins)/(time-8) 24.144 Frequency

Width of excited frequencies 25 Frequency 90th percentile of acceleration range Time Width of excited frequencies 25 Frequency

Total power 25 Frequency 90th - 10th percentile of velocity Time Total power 25 Frequency

While the amplitude and time domain features are straightforward to understand, some expla-
nation of the frequency features is in order. Many of them are statistics on the number of activated

bins in the STFT above a given power threshold across all frequencies in each time-step, referred to
as numHitBins. Each frequency domain feature can be re-instantiated with different cutoff thresh-
olds in the feature pool; the most relevant ones chosen by mRMR have their corresponding thresh-
olds indicated in Table 11.

ACKNOWLEDGMENTS

We are indebted to Don Dennis, Prateek Jain, and Harsha Vardhan Simhadri at Microsoft Research
India for their suggestions and feedback. We thank Jihoon Yun and Saswata Dasgupta for their
help in photographing the data collection locations.

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

12:26 D. Roy et al.

REFERENCES

[1] 2020. CMSIS-DSP Software Library. Arm Ltd. Retrieved from http://www.keil.com/pack/doc/CMSIS/DSP/html/index.

html.

[2] [n.d.]. Olentangy Trail usage, Columbus, OH. The city of Columbus. Retrieved from https://www.columbus.gov/

recreationandparks/trails/Future-Trails-(Updated)/.

[3] Joshua Adkins, Branden Ghena, Neal Jackson, Pat Pannuto, Samuel Rohrer, Bradford Campbell, and Prabal Dutta.

2018. The signpost platform for city-scale sensing. In Proceedings of the 17th ACM/IEEE International Conference on

Information Processing in Sensor Networks (IPSN’08). IEEE, 188–199.

[4] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. 2018. An empirical evaluation of generic convolutional and recurrent

networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018).

[5] Juan P. Bello, Claudio Silva, Oded Nov, R. Luke Dubois, Anish Arora, Justin Salamon, Charles Mydlarz, and Harish

Doraiswamy. 2019. SONYC: A system for monitoring, analyzing, and mitigating urban noise pollution. Commun.

ACM 62, 2 (2019), 68–77.

[6] Charles E. Catlett, Peter H. Beckman, Rajesh Sankaran, and Kate Kusiak Galvin. 2017. Array of things: A scientific re-

search instrument in the public way: Platform design and early lessons learned. In Proceedings of the 2nd International

Workshop on Science of Smart City Operations and Platforms Engineering. 26–33.

[7] Ohio Supercomputer Center. 1987. Ohio Supercomputer Center. Retrieved from http://osc.edu/ark:/19495/f5s1ph73.

[8] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the properties of neural

machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259 (2014).

[9] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. 2016. Hierarchical multiscale recurrent neural networks. arXiv

preprint arXiv:1609.01704 (2016).

[10] Don Dennis, Chirag Pabbaraju, Harsha Vardhan Simhadri, and Prateek Jain. 2018. Multiple instance learning for

efficient sequential data classification on resource-constrained devices. In Proceedings of the International Conference

on Advances in Neural Information Processing Systems. 10953–10964.

[11] Don Kurian Dennis, Yash Gaurkar, Sridhar Gopinath, Chirag Gupta, Moksh Jain, Ashish Kumar, Aditya

Kusupati, Chris Lovett, Shishir G. Patil, and Harsha Vardhan Simhadri. 2017. EdgeML: Machine Learning for resource-

constrained edge devices. Retrieved from https://github.com/Microsoft/EdgeML.

[12] Dustin P. Fairchild and Ram M. Narayanan. 2014. Classification of human motions using empirical mode decompo-

sition of human micro-Doppler signatures. IET Radar, Sonar Navig. 8, 5 (2014), 425–434.

[13] Richard M. Goldstein, Howard A. Zebker, and Charles L. Werner. 1988. Satellite radar interferometry: Two-

dimensional phase unwrapping. Radio Sci. 23, 4 (1988), 713–720.

[14] Song Han, Huizi Mao, and William J. Dally. 2015. Deep compression: Compressing deep neural networks with prun-

ing, trained quantization and Huffman coding. arXiv preprint arXiv:1510.00149 (2015).

[15] Jin He and Anish Arora. 2014. A regression-based radar-mote system for people counting. In Proceedings of the IEEE

International Conference on Pervasive Computing and Communications (PerCom’14). IEEE, 95–102.

[16] Jin He, Dhrubojyoti Roy, Michael McGrath, and Anish Arora. 2014. Mote-scale human-animal classification via mi-

cropower radar. In Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems. 328–329.

[17] Geoffrey E. Hinton. 1990. Mapping part-whole hierarchies into connectionist networks. Artif. Intell. 46, 1–2 (1990),

47–75.

[18] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Comput. 9, 8 (1997), 1735–1780.

[19] Rios Jesus Javier and Youngwook Kim. 2014. Application of linear predictive coding for human activity classification

based on micro-Doppler signatures. IEEE Geosci. Rem. Sens. Lett. 11, 10 (2014), 1831–1834.

[20] Branka Jokanovic, Moeness Amin, and Fauzia Ahmad. 2016. Radar fall motion detection using deep learning. In

Proceedings of the IEEE Radar Conference (RadarConf’16). IEEE, 1–6.

[21] Youngwook Kim and Hao Ling. 2008. Human activity classification based on micro-Doppler signatures using an

artificial neural network. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. IEEE,

1–4.

[22] Youngwook Kim and Brian Toomajian. 2016. Hand gesture recognition using micro-Doppler signatures with convo-

lutional neural network. IEEE Access 4 (2016), 7125–7130.

[23] Dimitrios Kotzias, Misha Denil, Phil Blunsom, and Nando de Freitas. 2014. Deep multi-instance transfer learning.

arXiv preprint arXiv:1411.3128 (2014).

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural

networks. In Proceedings of the International Conference on Advances in Neural Information Processing Systems. 1097–

1105.

[25] Ashish Kumar, Saurabh Goyal, and Manik Varma. 2017. Resource-efficient machine learning in 2 KB RAM for the

Internet of Things. In Proceedings of the 34th International Conference on Machine Learning, Vol. 70. JMLR. org, 1935–

1944.

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

http://www.keil.com/pack/doc/CMSIS/DSP/html/index.html
http://www.keil.com/pack/doc/CMSIS/DSP/html/index.html
https://www.columbus.gov/recreationandparks/trails/Future-Trails-(Updated)/
https://www.columbus.gov/recreationandparks/trails/Future-Trails-(Updated)/
http://osc.edu/ark:/19495/f5s1ph73
https://github.com/Microsoft/EdgeML

One Size Does Not Fit All: Multi-scale, Cascaded RNNs for Radar Classification 12:27

[26] Sangeeta Kumari, Dhrubojyoti Roy, Mark Cartwright, Juan Pablo Bello, and Anish Arora. 2019. EdgeL3: Compress-

ing L3-Net for mote scale urban noise monitoring. In Proceedings of the IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW’19). IEEE, 877–884.

[27] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade, and Ali Farhadi.

2020. Soft threshold weight reparameterization for learnable sparsity. In Proceedings of the International Conference

on Machine Learning.

[28] Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar, Prateek Jain, and Manik Varma. 2018. FastGRNN: A fast,

accurate, stable and tiny kilobyte sized gated recurrent neural network. In Proceedings of the International Conference

on Advances in Neural Information Processing Systems. 9017–9028.

[29] Liang Liu, Mihail Popescu, Marjorie Skubic, Marilyn Rantz, Tarik Yardibi, and Paul Cuddihy. 2011. Automatic fall

detection based on Doppler radar motion signature. In Proceedings of the 5th International Conference on Pervasive

Computing Technologies for Healthcare (PervasiveHealth’11) and Workshops. IEEE, 222–225.

[30] Gihan J. Mendis, Tharindu Randeny, Jin Wei, and Arjuna Madanayake. 2016. Deep learning based Doppler radar for

micro UAS detection and classification. In Proceedings of the IEEE Military Communications Conference (MILCOM’16).

IEEE, 924–929.

[31] Michael C. Mozer. 1992. Induction of multiscale temporal structure. In Proceedings of the International Conference on

Advances in Neural Information Processing Systems. 275–282.

[32] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of training recurrent neural networks.

In Proceedings of the International Conference on Machine Learning. 1310–1318.

[33] Hanchuan Peng, Fuhui Long, and Chris Ding. 2005. Feature selection based on mutual information criteria of max-

dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 8 (2005), 1226–1238.

[34] Dhrubojyoti Roy, Christopher Morse, Michael A. McGrath, Jin He, and Anish Arora. 2017. Cross-environmentally

robust intruder discrimination in radar motes. In Proceedings of the IEEE 14th International Conference on Mobile Ad

Hoc and Sensor Systems (MASS’17). IEEE, 426–434.

[35] Dhrubojyoti Roy, Sangeeta Srivastava, Pranshu Jain, Aditya Kusupati, Manik Varma, and Anish Arora. 2019. Light-

weight, deep RNNs for radar classification. In Proceedings of the 6th ACM International Conference on Systems for

Energy-efficient Buildings, Cities, and Transportation. 360–361.

[36] Dhrubojyoti Roy, Sangeeta Srivastava, Aditya Kusupati, Pranshu Jain, Manik Varma, and Anish Arora. 2019.

Micro-power pulse-Doppler radar clutter and displacement source classification dataset. DOI:https://doi.org/10.5281/

zenodo.3451407

[37] Dhrubojyoti Roy, Sangeeta Srivastava, Aditya Kusupati, Pranshu Jain, Manik Varma, and Anish Arora. 2019. MSC-

RNN: Multi-Scale, Cascaded RNNs for Radar Classification. DOI:https://github.com/dhruboroy29/MSCRNN

[38] Dhrubojyoti Roy, Sangeeta Srivastava, Aditya Kusupati, Pranshu Jain, Manik Varma, and Anish Arora. 2019. One

size does not fit all: Multi-scale, cascaded RNNs for radar classification. In Proceedings of the 6th ACM International

Conference on Systems for Energy-efficient Buildings, Cities, and Transportation. 1–10.

[39] Jürgen Schmidhuber. 1992. Learning complex, extended sequences using the principle of history compression. Neural

Comput. 4, 2 (1992), 234–242.

[40] The Samraksh Company. [n.d.]. BumbleBee Radar. Retrieved from https://goo.gl/ViMSiJ.

[41] The Samraksh Company. [n.d.]. .NOW with eMote. Retrieved from https://goo.gl/C4CCv4.

[42] UrbanCCD. 2018. Array of Things. Retrieved from https://medium.com/array-of-things/five-years-100-nodes-and-

more-to-come-d3802653db9f.

[43] Jiajun Wu, Yinan Yu, Chang Huang, and Kai Yu. 2015. Deep multiple instance learning for image classification and

auto-annotation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 3460–3469.

[44] Jinmian Ye, Linnan Wang, Guangxi Li, Di Chen, Shandian Zhe, Xinqi Chu, and Zenglin Xu. 2018. Learning compact

recurrent neural networks with block-term tensor decomposition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 9378–9387.

Received June 2020; revised November 2020; accepted November 2020

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 12. Publication date: January 2021.

https://doi.org/10.5281/zenodo.3451407
https://doi.org/10.5281/zenodo.3451407
https://github.com/dhruboroy29/MSCRNN
https://goo.gl/ViMSiJ
https://goo.gl/C4CCv4
https://medium.com/array-of-things/five-years-100-nodes-and-more-to-come-d3802653db9f
https://medium.com/array-of-things/five-years-100-nodes-and-more-to-come-d3802653db9f

